Do juvenile developmental and adult body characteristics differ among genotypes at the doublesex locus that controls female-limited Batesian mimicry polymorphism in Papilio memnon?: A test for the "cost of mimicry" hypothesis.
نویسندگان
چکیده
Female-limited Batesian mimicry may have evolved because of stronger predation pressure on females than on males, but some physiological costs of mimicry may also hinder the evolution of mimicry in males. In Papilio memnon, which possesses a female-limited Batesian mimicry polymorphism, two alleles at the doublesex (dsx) locus strictly control female phenotypes. To examine whether there are physiological costs associated with mimetic genotypes in the juvenile stage, we compered mortality, juvenile growth and development, and the resultant adult characteristics among three dsx genotypes (HH, Hh, hh) at a constant temperature (25 °C) and two differing day lengths (LD 14:10 and LD 12:12; the latter might induce pupal diapause) by crossing individuals heterozygous (Hh) for the dsx allele. All pupae emerged directly without diapause irrespective of day length. The genotype frequencies of the emerged individuals were consistent with the expected 1:2:1 ratio of HH:Hh:hh. The sex ratio was significantly male-biased in one of two families, but not in the other. We found no effect of genotype on any developmental or adult characteristic, although there were sex differences in most traits. The larval development time was longer and growth rate higher in females than in males; pupal weight, forewing length, and total dry mass of the thorax and abdomen were greater in females, whereas the thoracic mass/abdominal mass ratio was greater in males. We also found that the growth rate was higher and pupal period longer with a short day than with a long day. Overall, we found no evidence for physiological costs associated with the mimetic genotypes. However, it is too early to conclude that no physiological cost of mimicry affects the evolution and maintenance of this female-limited Batesian mimicry polymorphism because we have not studied the adults of different genotypes.
منابع مشابه
Identification of doublesex alleles associated with the female-limited Batesian mimicry polymorphism in Papilio memnon
The female-limited Batesian mimicry polymorphism in Papilio butterflies is an intriguing system for investigating the mechanism of maintenance of genetic polymorphisms. In Papilio polytes, an autosomal region encompassing the sex-determinant gene doublesex controls female-limited mimicry polymorphism. In the closely related species P. memnon, which also exhibits female-limited Batesian mimicry ...
متن کاملThe diversity and evolution of batesian mimicry in Papilio swallowtail butterflies.
Papilio swallowtail butterflies exhibit a remarkable diversity of Batesian mimicry, manifested in several sex-limited and polymorphic types. There is little understanding of how this diversity is distributed within Papilio, and how different mimicry types have evolved in relation to each other. To answer these questions, I present a graphical model that connects various mimicry types by hypothe...
متن کاملSex, butterflies and molecular biology: when pigmentation met mimicry
Pigmentation, specifically melanism, is often the driving force behind classic examples of natural selection such as camouflage and mimicry. However, whilst pigmentation in insects has long been considered the exclusive preserve of the genetic model Drosophila, stunning new papers on the molecular basis of melanism and mimicry in butterflies are beginning to show how evolution can act directly ...
متن کاملBehavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes.
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and fl...
متن کاملMimetic butterflies support Wallace's model of sexual dimorphism.
Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rath...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of insect physiology
دوره 107 شماره
صفحات -
تاریخ انتشار 2018